Atmospheric modeling of high- and low-frequency methane observations: Importance of interannually varying transport

Publication Type:

Journal Article

Source:

Journal of Geophysical Research: Atmospheres, Volume 110, Issue D10, p.D10303 (2005)

ISBN:

2156-2202

URL:

http://onlinelibrary.wiley.com/doi/10.1029/2004JD005542/abstract

Keywords:

Troposphere: composition and chemistry, Troposphere: constituent transport and chemistry

Abstract:

We compare modeled and observed atmospheric methane (CH4) between 1996 and 2001, focusing on the role of interannually varying (IAV) transport. The comparison uses observations taken at 13 high-frequency (∼hourly) in situ and 6 low-frequency (∼weekly) flask measurement sites. To simulate atmospheric methane, we use the global 3-D chemical transport model (MATCH) driven by NCEP reanalyzed winds at T62 resolution (∼1.8° × 1.8°). For the simulation, both methane surface emissions and atmospheric sink (OH destruction) are prescribed as annually repeating fields; thus, atmospheric transport is the only IAV component in the simulation. MATCH generally reproduces the amplitude and phase of the observed methane seasonal cycles. At the high-frequency sites, the model also captures much of the observed CH4 variability due to transient synoptic events, which are sometimes related to global transport events. For example, the North Atlantic Oscillation (NAO) and El Niño are shown to influence year-to-year methane observations at Mace Head (Ireland) and Cape Matatula (Samoa), respectively. Simulations of individual flask measurements are generally more difficult to interpret at certain sites, partially due to observational undersampling in areas of high methane variability. A model-observational comparison of methane monthly means at seven coincident in situ and flask locations shows a better comparison at the in situ sites. Additional simulations conducted at coarser MATCH resolution (T42, ∼2.8° × 2.8°) showed differences from the T62 simulation at sites near strong emissions. This study highlights the importance of using consistent observed meteorology to simulate atmospheric methane, especially when comparing to high-frequency observations.