Ten years of continuous observations of stratospheric ozone depleting gases at Monte Cimone (Italy) — Comments on the effectiveness of the Montreal Protocol from a regional perspective

Publication Type:

Journal Article


Science of The Total Environment, Volume 445-446, p.155 - 164 (2013)






Halogenated gases potentially harmful to the stratospheric ozone layer are monitored worldwide in order to assess compliance with the Montreal Protocol requiring a phase out of these compounds on a global scale. We present the results of long term (2002–2011) continuous observation conducted at the Mt. Cimone GAW Global Station located on the highest peak of the Italian Northern Apennines, at the border of two important regions: the Po Valley (and the Alps) to the North and the Mediterranean Basin to the South. Bi-hourly air samples of CFC-12, CFC-11, CFC-114, CFC-115, H-1211, H-1301, methyl chloroform, carbon tetrachloride, HCFC-22, HCFC-142b, HCFC-124 and methyl bromide are collected and analysed using a gas chromatograph–mass spectrometer, providing multi annual time series. In order to appreciate the effectiveness of the Montreal Protocol from a regional perspective, trends and annual growth rates of halogenated species have been calculated after identification of their baseline values. A comparison with results from other international observation programmes is also presented. Our data show that the peak in the atmospheric mixing ratios of four chlorofluorocarbons, two halons and two chlorocarbons has been reached and all these species now show a negative atmospheric trend. Pollution episodes are still occurring for species like halon-1211, methyl chloroform and carbon tetrachloride, indicating fresh emissions from the site domain which could be ascribed both to fugitive un-reported uses of the compounds and/or emissions from banks. For the hydrofluorocarbons changes in the baseline are affected by emissions from fast developing Countries in East Asia. Fresh emissions from the site domain are clearly declining. Methyl bromide, for which the Mediterranean area is an important source region, shows, in a generally decreasing trend, an emission pattern that is not consistent with the phase-out schedule of this compound, with a renewed increase in the last two years of pollution episodes.